

High Speed 1M bit/s Photocoupler

Product Description

The EMD2A50L consists of a high efficient AlGaP Light Emitting Diode and a high speed optical detector. This design provides excellent AC and DC isolation between the input and output sides of the Optocoupler. The output of the optical detector features an open collector Schottky clamped transistor. The internal shield ensures high common mode transient immunity. A guaranteed common mode transient immunity is up to 15KV/µs (min.). The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +110°C.

Applications

- Digital signal isolation
- Communications interface
- Micro-controller interface
- Feedback elements in switching power supplies
- Digital isolation for A/D, D/A conversion
 Digital field

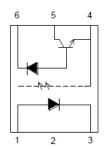
Features

- Stretched LSOP-6
- High speed: 1M bit/s typical
- Package creepage 7mm & 8mm
- Compatible with infrared vapor phase reflow and wave soldering process Inverter logic type
- Very high common mode transient immunity: 15K V/µs at VCM = 1500 V guaranty
- Guarantee performance from temperature range: -40°C to 110°C
- TTL compatible
- Open collector output

Safety approved

- UL1577 recognized with 3750 Vrms for 1 minute for EMD2A50L-SK and 5000 Vrms for 1 minute for EMD2A50L-SL Certificate No. E529603
- IEC/EN/DIN EN 60747-5-5 Approved

 VIORM = 891 Vpeak for EMD2A50L-SK


 VIORM = 1140 Vpeak for EMD2A50L-SL

 Certificate No. 40055846
- CQC approved: GB4943.1-2011
 Certificate No. CQC22001358589

SCHEMATIC	PIN DEFINITION	PACKAGE
PULSE GENERATOR Z _Q = 50Ω	1.Anode 2.NC 3.Cathode 4.GND 5.VO 6.Vcc	

Connection Diagram

Order Information

EMD2A50L-00S###%FR1

Internal control Code
 S### SK06: LSOP-6 Package 7mm clearance
 SL06: LSOP-6 Package 8mm clearance
 E: RoHS & Halogen free package with VDE
 N: RoHS & Halogen free package
 -40 to 110°C temperature rating

R1 Packing in Tape & Reel

Order, Mark & Packing Information

Package	Product ID		Packing	
	EMD2A50L-00SK06EFR1 EMD2A50L-00SL06EFR1	50L HV	E : ESMT YY : Date code (Year) WW : Date code (Week)	Tape &
LSOP-6	EMD2A50L-00SK06NFR1 EMD2A50L-00SL06NFR1	50L H	50L: Part Number H: Internal Tracking Code V: VDE Option	Reel 3Kpcs

Revision: 0.1 **2/11**

Absolute Maximum Ratings (Ta = 25°C unless otherwise specified)

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Tstg	-55	125	°C
Operating Temperature	Topr	-40	110	°C
Supply Voltage	VCC	-0.5	30	V
Average Forward Input Current	IF	-	25	mA
Reverse Input Voltage	VR	-	5	V
Input Power Dissipation	PI	-	45	mW
Output Collector Current	IO		8	mA
Output Collector Voltage	VO	-0.5	20	V
Output Collector Power Dissipation	PI	-	100	mW
Lead Solder Temperature	Tsol	-	260	°C

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	EMD2A50L-SK	EMD2A50L-SL	Unit	
Climatic Classification		55/100/21	55/100/21		
Pollution Degree (DIN VDE 0110/1.89)		2	2		
Maximum Working Insulation Voltage	Viorm	891	1140	Vpeak	
Input to Output Test Voltage, Method b (Note 1) VIORM X 1.875=VPR, 100% Production Test With tm=1sec, Partial discharge < 5pC	VPR	1671	2137	Vpeak	
Input to Output Test Voltage, Method a (Note 1) VIORM X 1.6=VPR, 100% Production Test With tm=10sec, Partial discharge < 5pC	VPR	1426	1824	Vpeak	
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60sec)	VIOTM	6000	8000	Vpeak	
Safety-limiting values – maximum values allowed in the event of a failure					
Case Temperature	Ts	175	175	$^{\circ}$	
Input Current	IS, INPUT	150	150	mA	
Output Power	Ps, оитрит	600	600	mW	
Insulation Resistance at TS, V10 = 500 V	Rs	>109	>109	Ω	

Note 1: Refer to the optocoupler section of th Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A accordance with CECC 00802.

Insulation and Safety-Related Specifications

Parameter	Symple of	EMI	D2A	Unit	Conditions
raiameier	Symbol	50L-SK	50L-SL	Uniii	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.0	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8.0	8.0		Measured from input terminals to output terminals, shortest distance path along body.
Tracking Resistance (Comparative Tracking Index)	СТІ	>175	>175	V	DIN IEC 112/VDE 0303 Part 1.

preliminary

Electrical Characteristics (DC)

All Typical values at $T_A = 25$ °C, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Input Forward Voltage	VF	1.6	2.0	2.4	٧	IF = 16 mA
Input Reverse Breakdown Voltage	BVR	5	-	-	>	IR = 10 μA
	CID	20	100	-	8	IF = 16mA; VCC = 4.5V; TA = 25 °C; VO = 0.4V
Current transfer ratio	CTR	15	110	- %	%	IF = 16mA; VCC = 4.5V; TA = 25°C; VO = 0.5V
Logic love or thought well as a second	VOL	-	0.1	0.4		IF = 16mA;VCC = 4.5V; Io = 3.0mA; TA = 25°C
Logic low output voltage	VOL	-	-	0.5	- V	IF = 16mA;VCC = 4.5V; Io = 2.4mA; TA = 25°C
		-	0.002	0.5		IF = 0mA, VO = VCC = 5.5V, TA = 25°C
Logic high output current	IOH	ı	0.013	1		IF = 0mA, VO = VCC = 15V TA = 25°C
		-	-	50	υA	TA = 0 ~ 70°C
Logic low supply current	ICCL	-	230	-	571	IF = 16mA, Vo = open (VCC=30V)
Logic high supply current	ICCH	-	0.002	1		IF = 0mA, Vo = open ; TA = 25°C (VCC = 30V)

Note 2: Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.

Publication Date: Jun. 2023 Revision: 0.1 4/11

Switching Specification (AC)

All Typical values at TA = 25°C, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

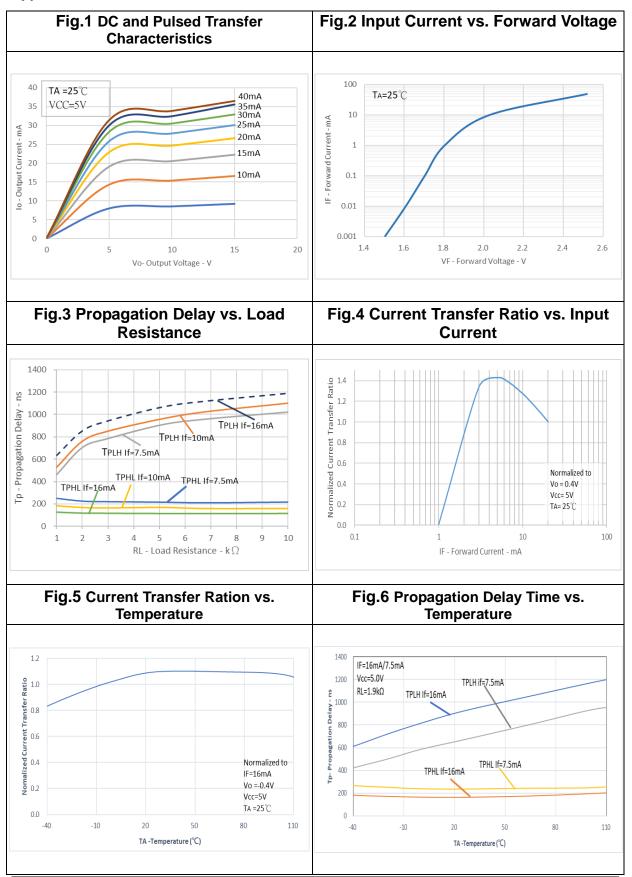
Parameter	Symbo I	Min.	Тур.	Max.	Unit	Test	Condition
Propagation Delay Time to	†PHL	-	250	800		TA = 25°C	
Low Output Level (Note 3)	II I I I	-	-	800	ns	0 ~ 100°C	- RL=1.9KΩ
Propagation Delay Time to	†PLH	-	650	800	113	TA = 25°C	NL-1.7N\\\2
High Output Level (Note 4)		-	-	800		0 ~ 100°C	
Common mode transient immunity at high level output (Note 5)	CMH 	15	25	-	kV/µs	IF = 0mA; V0 CL = 15 pF; RL=1.9KΩ	CM = 1500Vp-p; TA=25°C ,
Common mode transient immunity at low level output (Note 6)	CML 	15	25	-	kV/µs	IF = 16mA; \ CL = 15 pF; RL = 1.9KΩ	/CM = 1500Vp-p; TA = 25°C ,

- Note 3: tPLH (propagation delay) is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
- Note 4: tPHL (propagation delay) is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
- Note 5: CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.
- Note 6: CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state.

Isolation characteristic

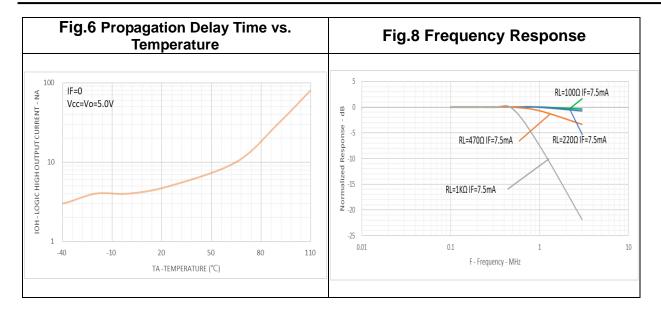
All Typical values at T_A = 25°C and V_{CC} = 5 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbo	Device	Min.	Тур.	Max.	Unit	Test Condition	
Withstand Insulation	\ <u>/</u>	EMD2A50L-SK	5000			\	RH ≤ 40%-60%,	
Test Voltage (Note 7, 8)	EMD2A50L-SL			5000	-	-	V	t = 1min, T _A = 25 °C
Input-Output Resistance (Note 7)	RI-O	-	-	1012	-	Ω	V _{I-O} = 500V DC	


Note 7: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

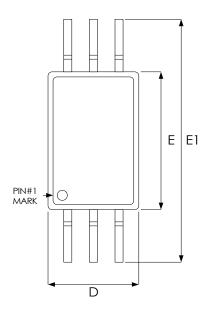
Note 8: According to UL1577, each photo coupler is tested by applying an insulation test voltage 6000VRMS for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge.

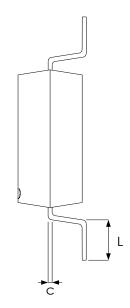
Publication Date: Jun. 2023 Revision: 0.1 5/11


Typical Performance Curves & Test Circuits

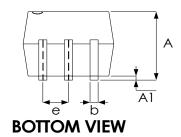
Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Jun. 2023 Revision: 0.1 6/11



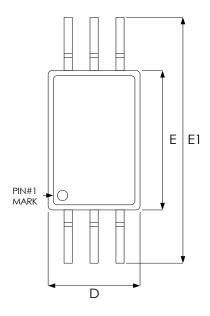


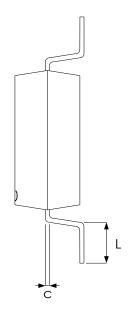
Publication Date: Jun. 2023 Revision: 0.1 **7/11**


Package Outline Drawing L-SOP 6L (277mil, 7mm clearance)

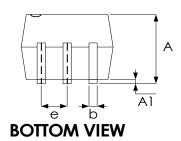
TOP VIEW

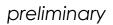
SIDE VIEW


Symbol	Dimension in mm				
Syllibol	Min.	Max.			
А	1.70	2.30			
A1	0.10	0.30			
ь	0.30	0.50			
С	0.20	0.30			
D	4.20	4.80			
Е	6.50	7.10			
E1	9.40	10.00			
е	1.27 BSC				
L	0.70	1.20			


Publication Date: Jun. 2023

Revision: 0.1


Package Outline Drawing L-SOP 6L (277mil, 8mm clearance)


TOP VIEW

SIDE VIEW

Cymbol	Dimension in mm				
Symbol	Min.	Max.			
А	1.70	2.30			
A1	0.10	0.30			
ь	0.30	0.50			
С	0.20	0.30			
D	4.20	4.80			
Е	6.51	7.11			
E1	11.20	11.80			
е	1.27 BSC				
L	0.50	1.00			

Publication Date: Jun. 2023 Revision: 0.1 **9/11**

EMD2A50L

Revision History

Revision	Date	Description
0.1	2023.06.01	Initial version

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Jun. 2023 Revision: 0.1 11/11